2370. [1998: 364] Proposed by Walther Janous, Ursulinengymnasium,

نویسنده

  • Walther Janous
چکیده

No problem is ever permanently closed. The editor is always pleased to consider for publication new solutions or new insights o n p a s t p r oblems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Around Apéry's Constant

In this note we deal with some aspects of Apéry’s constant ζ(3).

متن کامل

The Hlawka – Djoković Inequality and Points in Unitary Spaces

In this note several inequalities are proved. They are all in connection with the Hlawka–Djokovi´c inequality. At the end a problem for further research is posed.

متن کامل

Solutions We Have, Using the Am{gm Inequality Several Times, That

No problem is ever permanently closed. The editor is always pleased to consider for publication new solutions or new insights on past problems. 1 ; xy. We show that S 3 p 3 2. If one of x, y or z is 0, say, x = 0, then S = y + z < 2 < 3 p 3 2. Now, suppose that xyz 6 = 0, so that x, y, z 2 (0 1).

متن کامل

A Proof of Two Conjectures Related to the Erdös-debrunner Inequality

In this paper we prove some results which imply two conjectures proposed by Janous on an extension to the p-th power-mean of the Erdös–Debrunner inequality relating the areas of the four sub-triangles formed by connecting three arbitrary points on the sides of a given triangle.

متن کامل

500 Solutions

No problem is ever permanently closed. The editor is always pleased to consider for publication new solutions or new insights o n p a s t p r oblems. (1) Determine the set of all c > 0 such that whenever (1) holds, then we have x + y + z xy + yz+ zx. The positive r eals c asked for are those satisfying c 4. From (1), we have xy < c and z = c ; xy x + y + xy. Substituting this value of z into th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999